A New Fuzzy Set Merging Technique Using Inclusion-Based Fuzzy Clustering
نویسندگان
چکیده
منابع مشابه
A Fuzzy Clustering and Fuzzy Merging Algorithm
Some major problems in clustering are: i) find the optimal number K of clusters; ii) assess the validity of a given clustering; iii) permit the classes to form natural shapes rather than forcing them into normed balls of the distance function; iv) prevent the order in which the feature vectors are read in from affecting the clustering; and v) prevent the order of merging from affecting the clus...
متن کاملConvex-set-based fuzzy clustering
Prototype-based methods are commonly used in cluster analysis and the results may be highly dependent on the prototype used. In this paper, we propose a two-level fuzzy clustering method that involves adaptively expanding and merging convex polytopes, where the convex polytopes are considered as a “flexible” prototype. Therefore, the dependency on the use of a specified prototype can be elimina...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملAutomatic Feature Set Selection for Merging Image Segmentation Results Using Fuzzy Clustering
The image segmentation performance of clustering algorithms is highly dependent on the features used and the type of objects contained in the image, which limits the generalization ability of such algorithms. As a consequence, a fuzzy image segmentation using suppressed fuzzy c-means clustering (FSSC) algorithm was proposed that merged the initially segmented regions produced by a fuzzy cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Fuzzy Systems
سال: 2008
ISSN: 1063-6706,1941-0034
DOI: 10.1109/tfuzz.2007.902011